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Abstract

This paper presents an improved k-e modal for low Reynolds number turbulence

near a wall. The work is twofold: In the first part, the near-wall asymptotic behavior of

the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation

are analyzed. Based on these analyses, a modified eddy viscosity model with the correct

near-wall behavior is suggested, and a modal for the pressure transport term in the k-

equation is proposed. In addition, a modeled dissipation rate equation is reformulated,

and a boundary condition for the dissipation rate is suggested. In the second part of the

work, one of the deficiencies of the existing k - e models, namely, the wall distance (e.g.,

y+) dependency of the equations and the damping functions, is examined. An improved

model th_A does not depend on any wrA1 distance is introduced. Fully developed turbulent

channel flows and turbulent boundary layers over a flat plate are studied as validations for

the proposed new modets. Numerical results obtained from the present and other previous

k-e models axe compared with data from direct numerical simulation. The results show

that the present k-e model, with added robustness, performs as well as or better than other

existing models in predicting the behavior of near-wall turbulence.

1. Introduction

The k-e model is one of the most widely used. turbulence models in engincermg

applications. Patel et al.[ 1] recently reviewed existing two-equation models that can be

integrated directly to the wall. One of their conclusions was that the damping functions

used in turbulence models, especially the one for the eddy viscosity, need to be further

modified in order to improve model performance. In fact, as we shall see later, many

existing k-e models do not provide the correct near-wall behavior of the eddy viscosity.

Shih [2] recently proposed a new near-wall k - e model based on asymptotic analysis.

The present paper is a direct extension of that work.

In the present paper, we will first analyze, in section 2, the near-wall asymptotic

behavior of the eddy viscosity and the pressure transport term in the k-equation, and

in sections 3 and 4, propose models according to their near-wall behaviors. The modcl

equation for the dissipation rate is reformulated following an argument similar to that of

Lumley,[ 5] and a boundary condition for e is suggested.

An asymptotic analysis shows that, in the near wall region, while the pressure

transport term in the turbulent kinetic energy equation is small compared to the dissipation

and molecular diffusion terms, it is much larger than the turbulent transport term, and
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it playsan important role in the balancebetweenthe dissipationand moleculardiffusion
terms. This near-wallbehavioris alsoobservedin direct numerical simulation of fully
developedchannelflows(Mansouret al.[32],Kim et al.[*]). However,in existingk-e models,

this pressure transport term is either ignored or lumped into the turbulent transport model.

The present work introduces a model for the pressure transport term explicitly.

Most of the existing k-e models for near-wall turbulence use y+ (defined as ury/u,

where ur the friction velocity) as a parameter in constructing damping functions, with the

Jones-Launder model being the only exception. While the use of y+ is perfectly fine for

simple attached boundary layer flows, it is inconvenient in more general applications such
as separated flows and flows with corners, where y+ is not well defined. The Jones-Launder

model has the advantage of avoiding y+; however, the model is known to perform poorly

in predicting near wall turbulent quantities, especially the turbulence kinetic energy. In

the present work, a new damping function is derived based on asymptotic analysis (Section

5). The new function is constructed upon a non-dimensional quantity that is independent
of the coordinate system.

The new models proposed in this paper were validated using direct numerical simu-

lation data for fully developed turbulent channel flows and turbulent boundary layers over

a flat plate. These numerical results are reported in _ection 6. Comparisons are also made

with other popular k - e models implemented in the same computer code. The numerical

results show that the present model, in general, performs better than the existing models
while providing added robustness.

2. Asymptotic Analysis

To analyze the near-wall asymptotic behavior of the eddy viscosity and other tur-

bulent quantities, we expand the fluctuating velocities and pressure in Taylor series about
the wall distance as follows:

ua = bly + ely 2 + day 3 +...

u2 = c2y 2 + d2y 3 + ...

u3 _-- bay + c3y 2 + day 3 + ...

p = a t, + bpy + %y2 + dr,y3 +...

(1)

where the coefficients ap, bl, c2, ... are functions of z, z and t. Using the continuity and

momentum equations, Mansour et at.[ a] derived the following relations between the coeffi-

cients,

2c2 = -(bl,1 + b3,3)

%,1 = 2vcl (2)

ap,3 _ 2uca

The eddy viscosity is usually defined as

-(u ui) = t,7.(u ,i+ Ui, )- 2k,s j (3)
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where( ) standsfor ensembleaveragemid k = (t,,,t,)/'2 is the turbulent kinetic cncr_v.

For plane shear flows, we can write from Eq. (3)

-(_v) (4)
UT - OU / O_l

and using Eq. (1), we obtain the near-wall asymptotic behavior of the eddy viscosity:

-(b,_) ,_ -(b,d_ + ¢,_) + 2(b,c_)¢,),_, + 0(¢_ (5)

That is, near the wall vr is O(y3). A correct eddy viscosity model should have tiffs ne_-

wall behavior. We shall see later that many existing models do not have this near-wall

behavior. For later use, let us examine also the near-wall asymptotic behavior of the

turbulent kinetic energy k and its dissipation rate e _=_v(u_,ju_,j). Using Eq. (I), we

obtain the following relations for the k and e:

-_-=(b_)+ (b_)+ 4((b,c,) + (_))v + O(v_)
L'

_6)

(7)

1
In addition, the pressure transport term in the k-equation, II _= ---_(uiP,i), becomes (using

Eq.s (1) and (2))

H= -2_,((b_c_)+ (_c_))v + o(v _) (s)

The turbulent transport term in the k-equation, -(kui),i, can be estimatcd as 0(93).

Therefore, the pressure transport term is much larger than the turbulent transport term
near the wall.

3. Eddy viscosity model

In this section, we will propose a model for the eddy viscosity using its near-wall

behavior described in the previous section. In general, the eddy viscosity model can bc
written as

YT : C tt'_' (9)

where u _ and gr are the turbulent characteristic velocity and length scale, respectively.

Depending on how the velocity and length scales are specified, the eddy viscosity model

can be a mixing length model, a one-equation (k) model or a two-equation (e.g. k-e)

model. For example, in plane shear flows, Prandtl's mixing length model specifies the

characteristic velocity with ffOU/O 9. For near wall turbulence, the Van Driest mixing

length model further damps the length scale to y[1 - exp(-y+/A)]. For more advanced

mixing length models, see Baldwin and Lomax [61, and King [71. One-equation (k) models

use k 112 as the characteristic velocity, which is determined by the turbulent kinetic energy
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equation. In two-equationmodels,e.g. k-e models, the length scale is usually specified

by k3/2/e, where e is determined by a dissipation rate equation'. In this paper we will

concentrate on two-equation models, wherein the eddy viscosity is usually written as

k 2

VT = cur u- (I0)

where C u = 0.09, and fv is a damping function. The form of the damping function

is critical in such formulations, since the prediction of the mean velocity field depends

primarily on the eddy viscosity model. Thus it is important for an eddy viscosity model

to have the proper near-wall behavior. We have examined the near-wall behavior of eddy

viscosity models based on various k-e model equations. The results are listed in Table 1,
which shows that some of the k-e models do not have the correct near-wall behavior of the

eddy viscosity, namely, vt = O(ya).

The quantity ka/_/e is usually considered a characteristic length scale, g', (or the
size) of the energy containing eddies. One expects that near the wall the size of these

eddies to be of the order of the distance from the wall, O(y). However, Eq.s (6) and (7)
show that k3/2/e is O(ya). Hence, k3/:/e is not an appropriate quantity to represent the
length scale of the large eddies near the wall. We therefore introduce a new variable _:

= _ _ vOk/Ozi Ok/Ozi
2k (11)

which has the following property: _ approaches e away from the wall and is O(y 2) near the

wall. Therefore, k3/2/'g is a proper quantity to characterize the length scale of the large

eddies. With this length scale, the eddy viscosity should be written as

vT = Cufu k2 (12)

Now in order for V T to have the correct near-wall behavior, the damping function ft,

must be O(y) near the wall and approaches 1 away from the wall. The damping functions

used in various k-e models are listed in Table 2. If we consider the presence of the wall

as the main effect on the eddy viscosity, then we may assume fu is mainly a function of

y+. The form of fu can be determined quite accurately if we know vr, k and _ from, for

example, the direct numerical simulation. One may optimize the following simple form by
numerical experiments:

fu = 1 - exp(-aly + - a2y +2 - a3y +3 - a4y +4) (13)

The optimal values for channel flows are aa = 6 x 10-3,a2 = 4 x 10-4,a3 = -2.5 x

10-6,a4 = 4 x 10 -9. It can be shown that this form of damping function does provide

the required near-wall behavior. As will be shown later, the above constants are valid for
general boundary layer flows.
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4. Modeled k-e equation

To complete the eddy viscosity model, we need the modeled equations for the tur-

bulent kinetic energy and its dissipation rate. In this section we will aamlyze the near-wall

behavior of the k-equation and propose a model for the pressure transport term with a

proper near-wall behavior. The eciuation for the dissipation rate is also reformulated with

a formal invariant analysis.

4.1 k-equation

We start with the equation for the turbulent kinetic energy,

k,t + Ujk,.7 = D,, + T + II + P - c (14)

where Dr, T and II represent the transport of the turbulent kinetic energy due to the

viscosity, turbulent velocity and pressure, respectively. P and _ are the rate of production

and dissipation of the turbulent kinetic energy. The terms on the right hand side of Eq.

(14) are defined as follows:

Dv = uk,jj

T = -(k_,j) a

n = -!(p,,i), j (15)
P

P = -(ui=i)Ui,j

£ -_- t/(tti,jtti,j)

Using Eq.s (1) and (2), we obtain the budget of the k-equation near the wall,

Dk
-D; = O(y_)
D,, = u((b_) + (hi))+ 6u((bic,) + (b3c3))y + O(y 2)

T=O(Y z) (16)

n = -2.((b,c, ) + (b3c3))y+ o(y_)

_, = o(y 3)

. = .((b_,)+ @)) + 4,,((b,c,)+ (t,_c_))y+ o(y2)

This budget shows that the term II is much larger than the term T, and that II cannot

be neglected if we want the k-cquation be balanced in the near-wall region. However, the

existing models either do not consider this term or simply combine it with the term T and
model them as

,J

In this paper, we propose a model for II which has a similar form to that of the standard

turbulent transport model, but with a coefficient to ensure its correct near -wall behavior,

_1. (8). The proposed model form of II is

n = f.[1 - e_p(-y+)l ,,
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whereCo = 0.05 is a model constant. In some existing k-e models, it is assumed that e = 0
at the wall. In that case, in order to balance the term D,, a nonzero artificial term D

must be added to the k-equation. The form of D for various k-e models is listed in Table

3. Finally, the modeled k-equation becomes

ak ak a ak ] auj.
t6,+ok,Ox j q-lI-l-VT(_xjnt--'_xi)_xj-,-t-D (19)

In the present model, D = 0, since e is nonzero at the wall. (The boundary condition for

e will be discussed later.)

4.2 e-equation.

The exact dissipation rate equation is

e,t + Uje,i = D_, + T' + II' + PD ('2_0)

where D_,, T' and 1-I' represent the diffusion rate of the dissipation rate due to the viscosity,

turbulent velocity and pressure, respectively, and PD stands for the entire mechanism of

the production and destruction of the dissipation rate e. The terms on the right hand

s!-cle of the above equation are as follows:

D_, = veji

T' = --u(ui,kui,kuj),i

II' 2v= ----{p,kuj,k),j
P

PD = --2v((ui,kuj, k) + {uk.iuk,j) )Ui,j -- 2v(ujui,k)Ui,kj

- -- 2- 2(', ,kjui,kj)

(2])

The term II _ is usually neglected and the term T' is modeled as

,J

To model PD, we define • by

PD = e_ _
k

At the level of the k-e model, we assume k_ is a function of v, VT, k, e, _, Uij and Ui,jk.
Since • is an invariant, it must be a function of the invariants that can be constructed

from these quantities. Therefore we can write

q2 = C_(.Rt, yTUi'jUi'j k
' YVTUidkUi,ik-_E)

where R, is the turbulent Reynolds number k2/ve. We expand _ in a Taylor series about

uTUi,jUi,j/g and uvTUi.js, Ui..itk/d, and take only the linear terms. We obtain

= ¢0 q- _bl vTUi'jUi'j
-_ ¢2VvTUi,jkUi,jk _--'2 (23)

ee
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where the coefficients_b0,¢1 and ¢2 arc in generalfunctionsof Rt. Finally, tile modeled

dissipation rate equation becomes

(9_ (9_ (9 1/T) (9_ ] _ £_
--(gt+UJoxj -- 0xj [(v+ --a, Oxi +C_f] _vTUijUij, , -C2f2-_. q-E (9_4)

where, C1 and C2 are the model constants, and fl and f2 are functions of R_. The term

E in the present model comes from the last term in Eq. (23):

z = _,,ru_,j_u_,i_ (25)

where we have taken ¢2 = -1. The form of E and C1, C2, f] and f2 for various k-e models

are listed in Tables 3 and 4.

4.3 Boundary Condition for e.

Many of the earlier k - e models use e = 0 as the boundary condition for the

dissipation rate. It is now generally agreed that this is not the physically correct boundary

condition. However, controversy still exists in what boundary condition should be used for

the dissipation rate. In some calculations, (ge/Oy = 0 is used. which clearly has no physical

background. Most models use the second derivative of the turbulent kinetic energy at the

boundary as the boundary condition for e, as listed in Table 1. This condition comes

directly from the k-equation and is physically correct; however, it makes the problem very"

stiff and thus put very stringent restrictions on the choice of initial profiles for k and e.

If the initial profile for k is not given correctly, the second derivative of k can become

negative and cause the solution procedure to diverge.

We propose the following boundary condition based on the asymptotic analysis. At

y = 0, it is obvious from eqs. (6) and (7) that

0y /

This expression is exact at the wall, and it does not add stiffness to the solution procedure.

5. Deficiencies and hnprovements of Existing Models

5.1 Damping functions

One of the deficiencies of the existing near wall models is that most of the wall

damping coefficients are functions of a wall coordinate, such as the y+. This types of

damping function works well only in the cases of attached boundary layer flows with simple

geometries where y+ is well defined. For practical engineering problems with corner flows

or separated flows, some ad hoe treatment to the damping function must be made. The

same is also true for the length scale in an algebraic model. The only exception to the above

is the Jones-Launder model in which the damping function is a function of Rt = k _�re.

Although the Jones-Launder model has the advantage of independent of y+, it

is known that this model does not predict correctly the near-all turbulence, especially,
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the near-wallturbulent kinetic energyis underpredicted.Onenatural optiou could be to

modify the J-L model such that it would predict the correct near-wall turbulent quantities.

However, one basic difficulty met in such attempts is that the k-equation is very stiff. The

fact that we are putting k 2 back into the equation by using the parameter Rt aggravates
the situation.

To avoid the above difficulty and yet still achieve the same end, we introduce the

following parameter:
U 4

Ru = m, (27)
v_

where U is the total velocity. (Note: U is the total velocity in a coordinate frame fixed to

the solid boundary.) From the results given in Section 3, since e approaches a finite value

at the wall, it is obvious from eq. (1) that Ru = O(y 4) near the wall. Similar to eq. (t3)

of Section 3, we write the damping function for the eddy viscosity as:

,_1/2 _ a3R,,)fu = 1 - exp(-alR_/4 - a2rt, (28)

with aa = 5x 10 -3, a2 = 7x 10 -s, and a3 = 8 x 10 -7. One can easily verify that with this

damping function, the eddy viscosity has the correct near wall behavior, i.e., VT = O(y 3).

One point worth mentioning is the wide applicability of the above damping func-

tion. Though developed with Shih model (Section 3, 4) in mind, it can be used with any

existing k - e model that uses a non-zero boundary condition for the dissipation. This new

parameter R,,, unlike Rt, by no means affect the stability of the solution procedure.

5.2 Pressure transport term.

In order to remove the coordinate dependency of the k-equation, we replace the

pressure transport term given in eq. (18) by the following expression:

Co VT. 1

,3

where the model constant is readjusted to Co = 0.01.

5.3 The formulation of [.

In order to obtain the correct wall behavior for the eddy viscosity, we have in-

troduced g in eq. (11), Section 3. Theoretical analysis shows that _ is always positive.

However, in numerical calculations, the value of g may become negative or even oscillatory

due to round of errors. ( Depending on the accuracy of the numerical procedure, this may

or may not be the case.) Here, an alternative definition of _ is suggested:

(1 i/2= (30)

This expression has the same near wall behavior as eq. (11) but is less likely to cause

numerical instability.
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With die modificationssuggestedabove,the modelconst_mtsneedslight adjust-
ment. The constantsusedin the presentmodifiedmodelareasshownin Table4.

6. Numerical Testing

Flowswith self-similarsolutionsareparticularly usefulfor accuratemodel testing,
becausetheir solutionsare independentof initial conditions,and one doesnot need to
choosecarefully the initial conditionsfor the k and e. In this paper, we use a fully

developed channel flow and a flat plate boundary layer for model testing. These flows are

the simplest wall bmmded turbulent shear flows with self-similar solutions. However, the

complex features of the turbulence, for example, the effect of the wall on shear turbulence,

are present. In the case of the channel flow, the k-e equations form a one-dimensional

problem, numericM calculations are easy and accurate. Recently, the measurementsIS]

confirmed the accuracy of the direct numerical simulation data. 14] These data are used for

model validations.

In legends of the figures presented at the end of the paper, which will be discussed

in detail in the following paragraphs, the word "present" refers to results obtained using

the model suggested in Section 4 together with the new damping function and g given in

Section 5, while the label "Shih" refers to rest dts obtained using strictly formulations given

in Section 4.

6.1 Fully developed turbulent channel flow

Let h be the half width of the channel, u'. the friction velocity and Re,. the Reynolds

number defined as u'.h/v. Let U, k, e, VT and y be the non-dimensional quantities, normM-

ized by u'.,u_, u_/h, v and h, respectively. The modeled equations for the channel flow
become

dU Rerl-Y (31)
dy 1 +v

d 1 [1.+(l+C._VTldk .dU,2 1'okJ } (=)

{ + + )' Re,- =f=g+UT(--_y2 ) Re.----_=O (33)

where
k 2

VT = C_, f_ Re,- --:-
£

dk 12

2k Re'.

f_ = equation(13)

0.4 r ,Rer k= ,,2,

Co
C=

/,[1 - exp(-y +)]

(34)
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The boundaryconditionsaresimple. At,_l_ewall,

U=k=O

(ak _2 (35)_J
e-

2k Re,-

and at the center of the channel,
dk de

- - 0 (36)
dy dy

The main results from different k-e models for a channel flow with Re,- = 180

are plotted in figures 1 - 4. All the calculations are compared with the direct numerical

simulation data. Figure 1 shows mean velocity profile, Figure 2 shows the turbulent kinetic

energy, Figure 3 shows the turbulent shear stress distribution, and Figure 4 shows the

Dissipation rate. From these numerical results we reach the following conclusions: The

model of Jones and Launder0°] (JL) underpredicts the mean velocity as well as the peak

value of the turbulent kinetic energy. Chien's model [11] performs better than the JL model,

but it overpredicts the mean velocity near the center of the channel as well as the turbulent

kinetic energy. In these two models, e = 0 at the wall is used as the boundary condition,
so the dissipation rate'near the wall cannot be correctly predicted. Lain and Bremhorst[12]

use a nonzero boundary condition for e and have made some improvement for the mean

velocity and turbulent kinetic energy compared with the results of the JL model. However,

the shear is much overpredicted, and the dissipation rate near the wall is not correct. The

model of Nagano and Hishida [13] presents a very good prediction for the mean velocity and

shear stress, while the peak value of k is underpredicted. Their main modification to the

JL model is a change in the damping function f_, and the form of E: A zero dissipation rate

at the wall is used. The numerical results from the Shih model and the present modified

Shih model show improvements in the prediction of all quantities, including the dissipation
rate.

6.2 Boundary layer flows

The boundary layer equations and the corresponding k- and e-equations are solved

using a conventional semi-implicit finite difference scheme. In this scheme, the coefficients

for the convection terms are lagged one step in the x-direction, and the source terms in

the k- and e-equation are linearized in such a way that stability is ensured.

In the present study, a grid of 100 points in the y-direction is used. The grid is

stretched hnearly with Ayi+l/Ay i = 1.05. The grids expands in the y-direction according

the the boundary layer growth rate.

The results of this calculation are presented in Figure 5 through Figure 10.

Figure 5 and 6 show the comparison of the wall shear stress from various models to

experimental data and some DNS data. As shown in Figure 5, at low Reynolds number

(based on momentum thickness), J-L model overpredicts the shear stress while Chien

model and NH model underpredict the shear stress. One common character of these three

models is that they all used zero boundary condition for the dissipation, and thus unable
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to predict the correct turbulencenear wall behavior. At high Reynoldsnumber(Figure
6) the JL modelstill overpredictsthe wall shearstress,while theothers seemto do a fare
job.

Figure 7 and 8 are the resultsfor Rco = 1410, and Figure 9 and 10 are the results

for Reo = 7700. From these results one can reach similar conclusions as we did from tile

channel flow case: The JL model generally underpredicts the peak value of the turbulent

kinetic energy while overpredicts it in the inertia layer; the model also underpredicts the

mean velocity profiles. The LB model and the NH model also underpredict the peak value

of the turbulent kinetic energy t_ear the wall. The three models mentioned above either

have zero boundary" condition for e or do not have the correct order of magnitude for eddy

viscosity. The Figures show that, in general, the present model performs better than the

existing models.
Conclusions

From the model testing, we conclude that the present k -e model has made consid-

erable improvement over previous k-e models according to the comparison with th_ direct

numerical simulation data. We find that the improvement is mainly due to the modified

eddy viscosity model mad the mc, del of the pzessure tr,'uasport term in the k-_ quatic_n. The

proposed dissipation rate equation also shows a better near-wall behavior than the previ-

ous ones. The correct boundary condition for e also seem to play an important role in the

accurate prediction of the turbulence near wall behavior.
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Table i Eddy viscosity and boundary condition for e in various k-e models

Model Y T "BC: ew

JL O(y 3) 0

Reynolds O(y 5) v o2k
ay 2
a2k

LB O(y 4) v-E_v

Chien O(y 3) 0

NH Olg4 ) 0

Shih O(y 3 ) 2v (a0-b_rk)2

Present O(y a) 2v(_) 2

Table 2 Damping functions used in various k-e models

Model fv fl

JL exp( -2.5 -,+R,/So) 1.0

Reynolds 1 - exp(-.0198R_) 1.0

LB [1 - exp(-.0165Rk)] 2 1 + (.05)3K
20.5x(1 + -E-' ,

Chien 1 - exp(-.0115y +) 1.0

NH [1 - exp(-y +/26.5)] 2 1.0

Shih Eq. (13) 1.0

Present Eq. (28) 1.0

A
1 - .3 exp(-Rt 2)

[1 -.3 exp(-Rt2/9)]f,

l - exp(--l_t)

1 -.22exp(-Rt2/36)
1 - .3 exp(-R_)

1 -.22 exp(-R_/36)

1-.22 exp(-Rp/36)
Table 3 Model terms in various k-e models

Model II D
0v_ 2

JL 0 -2v(_)
Reynolds 0 0
LB 0 0
Chien 0 2_K

y2

NH o
Shih Eq. (18) 0

Present Eq. (29) 0

E

0
0

2t,,¢
----,; exp(-.5y +)

( a2u _2
VVT(1 -- f#)kOy2 ]

[ 02U'_2

_'VT _,"gffr_2)
[O_U_ 2

Vl/Tk'-ff_"y )

Table 4 Model constants in various k-e models

Model C l, Cx C2 ak a,
3L .09 1.45 2.0 1.0 1.3

Reynolds .084 1.0 1.83 1.69 1.3
LB .09 1.44 1.92 1.0 1.3
Chien .09 1.35 1.8 1.0 1.3
NH .09 1.45 1.9 1.0 1.3
Shih .09 1.45 2.0 1.3 1.3
Present .09 1.5 2.0 1.3 1.3

2t = K21ve, I{I:= v/-KYlv, y+ = ury/v.
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Low Reynolds Number Two-Equation

Modeling of Turbulent Flows

V. Michelassi; T.-H. Shih

Center for Modeling of Turbulence and Transition
NASA Lewis Research Center

March 28, 1991

Abstract

A new k -, turbulence model that accounts for viscous and wall effects is

presented. The proposed formulation does not contain the local wall distance

thereby making very simple the application to complex geometries. The for-

mulation is based on an existing k - e model that proved to fit very well with

the results of direct numerical simulation. The new form is compared with nine

"different two-equation models and with direct numerical simulation for a fully

developed channel flow at Re = 3300. The simple flow configuration allows a

comparison free from numerical inaccuracies. The computed results prove that

few of the considered forms exhibit a satisfactory agreement with the channel

flow data. The new model shows an improvement with respect to the existing

formulations.
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MODELING OF NEAR-WALL TURBULENCE

T.H.Shih*

Institute for Computational Mechanics in Propulsion
Lewis Research Center

Cleveland, Ohio 44135

N.N. Mansour

National Aeronautics and Space Administration
Ames Research Center

Moffett Field, California 94035
i

ABSTRACT

This paper presents an improved k-e model and a second order closure model for low-

Reynolds number turbulence near a wall. For the k< model, a modified form of the eddy

viscosity having correct asymptotic near-wall behavior is suggested, and a model for the pres-

sure diffusion term in the turbulent kinetic energy equation is proposed. For the second order

closure model, we modify the existing models for the Reynolds-stress equations to have proper

neax-wall behavior. A dissipation rate equation for the turbulent kinetic energy is also refor-

mulated. The proposed models satisfy realizability and will not produce unphysical behavior.

Fully developed channel flows are used for model testing. The calculations are compared with
direct numerical simulations. It is shown that the present models, both the k< model and the

second order closure modal, perform well in predicting the behavior of the near wall turbulence.

Significant improvements over previous models are obtz.ined.
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ADVANCES IN MODELING

THE PRESSURE CORRELATION TERMS

IN THE SECOND MOMENT EQUATIONS

Tsan-Hsing Shih and Aamir Shabbir

Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition
Lewis Research Center

Cleveland, Ohio 44135

and

John L. Lumley

Cornell University

Ithaca, New York 14853

ABSTRACT

In developing turbulence models, different authors have proposed various model con-

straints in an attempt to make the model equations more general (or universal). The most

recent of these axe the realizability principle (Lumley 1978, Schumann 1977), the lineaxity

principle (Pope 1983), the rapid distortion theory (Reynolds 1987) and the material indif-

ference principle (Speziale 1983). In this paper we will discuss several issues concerning

these principles and will pay special attention to the realizability principle raised by Lure-

Icy (1978). Realizability (defined as the requirement of non-negative energy and Schwaxz'

inequality between any fluctuating quantities) is the basic physical and mathematical prin-

ciple that any modeled equation should obey. Hence, it is the most universal, important

and also the minimal requirement for a model equation to prevent it from producing un-

physical results. In this paper we will describe in detail the principle of realizability, derive

the realizability conditions for various turbulence models, and propose the model forms

for the pressure correlation terms in the second moment equations. Detailed comparisons

of various turbulence models (Launder et al. 1975, Craft et al. 1989, Zeman and Lumley

1976, Shih and Lumley 1985 and one proposed here) with experiments and direct numeri-

cal simulations will be presented. As a special case of turbulence, we will also discuss the

two-dimensional two-component turbulence modeling.
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